Pennsylvania Stormwater Best Management Practices Manual

Appendix A – Water Quality

Pollutant Event Mean Concentrations by Land Cover & BMP Pollutant Removal Efficiencies

Pollutant Event Mean Concentrations by Land Cover

TABLE A-1. EVENT MEAN CONCENTRATIONS (EMCs) FOR TOTAL SUSPENDED SOLIDS

	LAND COVER CLASSIFICATION	TSS EMC (mg/l)	SOURCES	COMMENTS
	Forest	39	B, G, M	
sec	Meadow	47	B, N	
rfac	Fertilized Planting Area	55	Q, R	R: "Residential" area had considerable mulched areas
Su	Native Planting Area	55	Q, R	R: "Residential" area had considerable mulched areas
sno	Lawn, Low-Input	180	C, O, Q, R	Median of four values
rvio	Lawn, High-Input	180	C, O, Q, R	Median of four values
Pe	Golf Course Fairway/Green	305	M, R	Average of two values
	Grassed Athletic Field	200	M, N	Average of two values
es	Rooftop	21	Q, S, V	Average of Residential, Commercial, and Industrial Roofs
fac	High Traffic Street / Highway	261	E, F, H, P, Q	Median of five values
Sur	Medium Traffic Street	113	A, B, H, I, J, P, Q	Median of seven values
sn	Low Traffic / Residential Street	86	E, P, Q	Average of three values
vio	Res. Driveway, Play Courts, etc.	60	М	"Urban Recreation"
per	High Traffic Parking Lot	120	J, N, Q	Median of three values
<u></u>	Low Traffic Parking Lot	58	I, M, N, Q	Median of 4 values w/ "comm.", "indust.", "parking" & "comm/res."

TABLE A-2. EVENT MEAN CONCENTRATIONS (EMCs) FOR TOTAL PHOSPHORUS

	LAND COVER CLASSIFICATION	TP EMC (mg/l)	SOURCES	COMMENTS
	Forest	0.15	B, I, J, M, R, X	
sec	Meadow	0.19	F, W	Value from F, W reported no soluble phosphorus from meadow
rfac	Fertilized Planting Area	1.34	F	Study indicated highly maintained landscapes in "High Density Resid."
Su	Native Planting Area	0.40	F, W	W had no soluble P from mulch, assumed equivalent to low-input lawn
sno	Lawn, Low-Input	0.40	F	Value for "Low Density Residential"
rzio	Lawn, High-Input	2.22	K, L, S, V	Median of four values
Pe	Golf Course Fairway/Green	1.07	R	
	Grassed Athletic Field	1.07	R	No data found, assumed eqivalent to golf course
es	Rooftop	0.13	L, S, V	Median of three values
fac	High Traffic Street / Highway	0.40	L, P, S	Median of 3 values including "Arterial St." and "Urban St."
Sur	Medium Traffic Street	0.33	I, L, M, X	Median of 4 values including "Transportation"
sn	Low Traffic / Residential Street	0.36	L, P, S, V	Median of 4 values including "Feeder St." and "Rural Rd."
vio	Res. Driveway, Play Courts, etc.	0.46	L, M, S, V	Median of 4 values including "Urban Recreation"
per	High Traffic Parking Lot	0.39	S	
<u></u>	Low Traffic Parking Lot	0.15	N, S, V	Median of three values

TABLE A-3. EVENT MEAN CONCENTRATIONS (EMCs) FOR NITRATE

	LAND COVER CLASSIFICATION	Nitrate-Nitrite EMC (mg/l as N)	SOURCES	COMMENTS
	Forest	0.17	J	
ses	Meadow	0.3	В	EMC for TN adjusted
rfac	Fertilized Planting Area	0.73	F, R	Studies indicated mulched areas & highly maintained landscapes
Su	Native Planting Area	0.33	Т	Assumed equivalent to turfgrass w/o chemical treatment
sne	Lawn, Low-Input	0.44	T, U, W	Based on studies of lawn runoff and leachate
rvio	Lawn, High-Input	1.46	C, T, U	Median of 3 studies in T and NURP data in C - consistent with U
Pel	Golf Course Fairway/Green	1.84	M, R, U	Average of 3 values including one study of leachate
	Grassed Athletic Field	1.01	М	
es	Rooftop	0.32	L, U	
fac	High Traffic Street / Highway	0.83	D, F, I, L, P	Median of five values
Sur	Medium Traffic Street	0.58	D, I, L, P	Median of four values
sn	Low Traffic / Residential Street	0.47	V	EMC for TN adjusted
vio	Res. Driveway, Play Courts, etc.	0.47	V	Assumed equivalent to residential street
per	High Traffic Parking Lot	0.60	F	Value reported for "Retail"
<u></u>	Low Traffic Parking Lot	0.39	C, F, L	Median of 3 values after EMC for TN adjusted

REFERENCES

REFERENCES FOR TABLES A-1, A-2, AND A-3

- A. Weiss, W. and Guerard, P. 1995. "Water Quality of Storm Runoff and Comparison of Procedures for Estimating Storm-Runoff Loads, Volume, Event-Mean Concentrations, and the Mean Load for a Storm for Selected Properties and Constituents for Colorado Springs, Southeastern Colorado, 1992," Water-Resources Investigations Report 94-4194, U.S. Geological Survey.
- B. CH2MHILL, 2002. Watershed Modeling Technical Memorandum No. 8, prepared for Wake County, NC. Available at <u>http://projects.ch2m.com/WakeCounty/Docs/TM8_model%20assumptions.pdf</u>.
- **C.** U.S. Environmental Protection Agency, 1999. "Preliminary Data Summary of Urban Storm Water Best Management Practices," EPA-821-R-99-012, Office of Water, Washington, DC.
- **D.** Thomas, A., Tellam, J., and Greswell, R. "Development of a GIS Based Urban Groundwater Recharge Pollutant Flux Model," School of Earth Sciences, University of Birmingham, UK.
- **E.** Federal Highway Administration. "Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring." Available at http://www.fhwa.dot.gov/environment/ultraurb/.
- F. McConnell, R., Araj, E., and Jones, D., 1999. "Developing Nonpoint Source Water Quality Levels of Service for Hillsborough County, Florida," presented at the Sixth Biennial Stormwater Research & Watershed Management Conference.
- **G.** "Wake County Watershed Management Plan," July 25, 2001, presented by Wake County, CH2MHILL, and the Center for Watershed Protection.
- H. U.S. Environmental Protection Agency, 2001. "PLOAD Version 3.0 User's Manual: An ArcView GIS Tool to Calculate Nonpoint Sources of Pollution in Watershed and Stormwater Projects."
- I. Baird, C., Dybala, T., Jennings, M., and Ockerman, D., 1996. "Characterization of Nonpoint Sources and Loadings to Corpus Christi Bay National Estuary Program Study Area," Corpus Christi Bay National Estuary Program, CCBNEP-05.
- J. "The Simple Method to Calculate Urban Stormwater Loads" available from the Center of Watershed Protections' Stormwater Manager's Resource Center at: <u>http://www.stormwatercenter.net/monitoring%20and%20assessment/simple%20meth/simple.ht</u> <u>m</u>.
- K. Green Valleys Association (GVA), 1999. Sustainable Watershed Management for Northern Chester County Watersheds: A Model Program to Balance Water Resources and Land Development in the Schuylkill River Tributary Watersheds: French Creek, Pickering Creek, Pigeon Creek, Stony Run, and Direct Schuylkill Drainage. Technical Assistance From: Cahill Associates, Inc. and Brandywine Conservancy.
- L. Ed. Schueler, T.R. and H.K. Holland, 2000. "Storm Pollution Source Areas Isolated in Marquette, Michigan (Technical Note #105)," article in the edited anthology *The Practice of Watershed Protection*, Center of Watershed Protection, Ellicott City, MD.

- **M.** Philadelphia Water Department, Office of Watersheds, 2000. *Technical Memorandum No. 3: A* Screening Level Contaminant Loading Assessment for the Darby and Cobbs Creek Watershed (DRAFT).
- N. Larm, T., 2000. Watershed-based design of stormwater treatment facilities: model development and applications, Doctoral Thesis. Division of Water Resources Engineering, Department of Civil and Environmental Engineering, Royal Institute of Technology, Stockholm, Sweden.
- **O.** United States Environmental Protection Agency (USEPA), 1993. *Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters* (EPA 840-B-92-002).
- P. United States Environmental Protection Agency (USEPA), 1983. Results of the Nationwide Urban Runoff Program, Volume I: Final Report, Water Planning Division, Washington, D.C. December 1983. & Federal Highway Administration (FHWA),1990. Pollutant Loadings and Impacts from Highway Stormwater Runoff Volume III: Analytical Investigation and Research Report, FHWA-RD-88-008, Office of Engineering and Highways Operations R&D, McLean, VA.
- **Q.** Center for Watershed Protection, 1996. *Design of Stormwater Filtering Systems*. Prepared for the Chesapeake Research Consortium.
- **R.** Jennings, G., D. Line, B. Hunt, D. Osmond, Nancy White. *Neuse River Basin Pollution Sources and Best Management Practices.*
- S. Bannerman, R.T., R. Dodds, D. Owens, and P. Hughes, 1992. Sources of Pollutants in Wisconsin Stormwater. Wisconsin Department of Natural Resources and U.S. Geological Survey. Prepared for USEPA.
- **T.** Ed. Schueler, T.R. and H.K. Holland, 2000. "Nitrate Leaching Potential from Lawns and Turfgrass (Technical Note #56)," article in the edited anthology *The Practice of Watershed Protection*, Center of Watershed Protection, Ellicott City, MD.
- **U.** Ed. Schueler, T.R. and H.K. Holland, 2000. "Nutrient Movement from the Lawn to the Stream (Technical Note #4)," article in the edited anthology *The Practice of Watershed Protection*, Center of Watershed Protection, Ellicott City, MD.
- V. Center for Watershed Protection, 2003. *New York State Stormwater Management Design Manual*. Prepared for New York State Department of Environmental Conservation.
- W. Ed. Schueler, T.R. and H.K. Holland, 2000. "The Peculiarities of Perviousness (Technical Note #129)," article in the edited anthology *The Practice of Watershed Protection*, Center of Watershed Protection, Ellicott City, MD.
- X. Kieser & Associates, 2001. Non-point Source Modeling of Phosphorous Loads in the Kalamazoo River/Lake Allegan Watershed for a Total Maximum Daily Load. Prepared for The Kalamazoo Conservation District, Kalamazoo, MI.

ADDITIONAL REFERENCES

- Choe, J.S., K.W. Bang, and J.H. Lee, 2002. "Characterization of surface runoff in urban areas," Water Science & Technology, 45(9): 249-254.
- Clinton, B.D. and Vose, J.M., 2003. Differences in Surface Water Quality Draining Four Road Surface Types in the Southern Appalachians, Southern Journal of Applied Forestry, 27(2).
- County of Los Angeles, Department of Public Works, 2000. Los Angeles County 1999-2000 Stormwater Monitoring Report.
- James, R.B., 1999. Solids in Storm Water Runoff. Water Resources Management.
- National Atmospheric Deposition Program/National Trends Network, 2001. 2000 Annual & Seasonal Data Summary for Site NC41.
- Ed. Schueler, T.R. and H.K. Holland, 2000. "Is Rooftop Runoff Really Clean (Technical Note #8)," article in the edited anthology *The Practice of Watershed Protection*, Center of Watershed Protection, Ellicott City, MD.

BMP Pollutant Removal Efficiencies-Percent Efficiency

	COMPREHENSIVE BMP LIST								
		Pollutant	Removal Eff	iciency %					
		TSS	TP	NO3					
Non-S	Structural BMP								
5.4.1	Protect Sensitive / Special Value Features	SC	SC	SC					
5.4.2	Protect / Conserve / Enhance Riparian Areas	SC	SC	SC					
5 4 0	Protect / Utilize Natural Flow Pathways in Overall								
5.4.3	Stormwater Planning and Design	30	20	0					
A	Cluster Uses at Each Site; Build on the Smallest								
5.5.1	Area Possible	SC	SC	SC					
0	Concentrate Uses Areawide through Smart Growth								
5.5.2	Practices	SC	SC	SC					
5.6.1	Minimize Total Disturbed Area - Grading	40	0	0					
5.6.2	Minimize Soil Compaction in Disturbed Areas	30	0	0					
F C C	Re-vegetate and Re-forest Disturbed Areas using								
5.6.3	Native Species	85	85	50					
5.7.1	Reduce Street Imperviousness	SC	SC	SC					
5.7.2	Reduce Parking ImperviousnesS	SC	SC	SC					
5.8.1	Rooftop Disconnection	30	0	0					
5.8.2	Disconnection from Storm Sewers	30	0	0					
5.9.1	Streetsweeping	85	85	50					
Struc	tural BMP								
6.4.1	Porous Pavement with Infiltration Bed	85	85	30					
6.4.2	Infiltration Basin	85	85	30					
6.4.3	Subsurface Infiltration Bed	85	85	30					
6.4.4	Infiltration Trench	85	85	30					
6.4.5	Rain Garden / Bioretention	85	85	30					
6.4.6	Dry Well / Seepage Pit	85	85	30					
6.4.7	Constructed Filter	85	85	30					
6.4.8	Vegetated Swale	50	50	20					
6.4.9	Vegetated Filter Strip	30	20	10					
6.4.10	Infiltration Berm and Retentive Grading	60	50	40					
6.5.1	Vegetated Roof	85	85	30					
6.5.2	Rooftop Runoff - Capture and Reuse	100	100	100					
6.6.1	Constructed Wetland	85	85	30					
6.6.2	Wet Pond / Retention Basin	70	60	30					
6.6.3	Dry Extended Detention Basin	60	40	20					
6.6.4	Water Quality Filter	60	50	20					
6.7.1	Riparian Buffer Restoration	65	50	50					
6.7.2	Landscape Restoration	85	85	50					
6.7.3	Soils Amendment and Restoration	85	85	50					

Table A-4. Summary of pollutant removal efficiencies of stormwater BMPs.

SC, Self Crediting: The BMP reduces the pollutant load, thus is self-crediting. BMPs with this designation are labeled as " Preventive" in Section 5.

** All values shown represent professional interpretation, based upon best available data as provided in Appendix A.**

5.9.1 STREETSWEEPING

	Pollutant Removal % Efficiency								
Туре	TSS	TN	NO ₃	NO _x	TKN	ТР	Primary Source	Secondary Source	Comments
Biweekly Sweeping	40-60					20-40	Kurahashi & Associates, Inc. 1997. Port of Seattle - Stormwater Treatment BMP Evaluation. Prepared for the Port of Seattle, Pier 66. Prepared by Kurahashi & Associates, in association with AGI Technologies.	Federal Highway Administration (FHWA). "Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring – Monitoring Case Study-Streetsweeping BMP Evaluation, Port of Seattle, Washington." U.S. Department of Transportation.	Land Use = cargo container yards
Weekly Sweeping	45-65					30-55	Kurahashi & Associates, Inc. 1997. Port of Seattle - Stormwater Treatment BMP Evaluation. Prepared for the Port of Seattle, Pier 66. Prepared by Kurahashi & Associates, in association with AGI Technologies.	Federal Highway Administration (FHWA). "Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring – Monitoring Case Study-Streetsweeping BMP Evaluation, Port of Seattle, Washington." U.S. Department of Transportation.	Land Use = cargo container yards
Twice Weekly Sweeping	45-70					35-60	Kurahashi & Associates, Inc. 1997. Port of Seattle - Stormwater Treatment BMP Evaluation. Prepared for the Port of Seattle, Pier 66. Prepared by Kurahashi & Associates, in association with AGI Technologies.	Federal Highway Administration (FHWA). "Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring – Monitoring Case Study-Streetsweeping BMP Evaluation, Port of Seattle, Washington." U.S. Department of Transportation.	Land Use = cargo container yards
Vacuum- assisted sweeper efficiency	42	77				74	NVPDC. 1992. Northern Virginia BMP Handbook: A Guide to Planning and Designing Best Management Practices in Northern Virginia. Prepared by Northern Virginia Planning District Commission (NVPDC) and Engineers and Surveyors Institute.	Federal Highway Administration (FHWA). "Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring: Fact Sheet - Street Sweepers." U.S. Department of Transportation.	
Mechanical Sweeper	55	42				40	NVPDC. 1992. Northern Virginia BMP Handbook: A Guide to Planning and Designing Best Management Practices in Northern Virginia. Prepared by Northern Virginia Planning District Commission (NVPDC) and Engineers and Surveyors Institute.	Federal Highway Administration (FHWA). "Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring: Fact Sheet - Street Sweepers." U.S. Department of Transportation.	
RANGE	40 - 70	42 - 77				20 - 74			

|--|

	Pollutant Removal % Efficiency								
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments
Porous Pavement	80	80					Johnston Smith Consulting Limited. <i>Sustainable Urban</i> <i>Drainage Systems - SUDS</i> .		
Porous Pavement	95	88					Metropolitan Washington Council of Governments (MWCOG). 1983. Urban Runoff in the Washington Metropolitan Area: Final Report, Urban Runoff Project, EPA Nationwide Urban Runoff Program. Metropolitan Washington Council of Governments, Washington, DC.		
Porous Pavement	82	80				65	Schueler, T.R. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Metropolitan Washington Council of Governments. Department of Environmental Programs.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	# of storms = 13; STP Size = 0.553acres; Percent efficiency calculated using mass efficiency method.
Porous Pavement	95	85				65	Schueler, T.R. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Metropolitan Washington Council of Governments. Department of Environmental Programs.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Percent efficiency calculated using mass efficiency method.
Porous Pavement	97					94	St. John, M. 1997. Effect of Road Shoulder Treatments on Highway Runoff Quality and Quantity. University of Washington.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	"Asphalt void volume 22%"; # of storms = 9
Porous Pavement	95	82					Stormwater Manager's Resource Center (SMRC). Stormwater Management Fact Sheet: Porous Pavement.		
Porous Pavement	65-100	65-100				30-65	USEPA. 1999. Preliminary Data Summary of Urban Stormwater BMPs.		
RANGE	65-100	65-100				30 - 94			

6.4.2 INFILTRATION BASIN

	Pollutant Removal % Efficiency									
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments	
Infiltration Basin	95	65					Cahill Assoc. Technical BMP Manual & Infiltration Feasibility Report: Infiltration of Stormwater in Areas Underlain by Carbonate Bedrock within the Little Lehigh Creek Watershed. Nov 2002.			
Infiltration Basin	75	45 - 55				50 - 55	Schueler, T. 1987. Controlling urban runoff – a practical manual for planning and designing urban best management practices. Metropolitan Washington Council of Governments, Washington, DC.	FHWA, 1999. Stormwater Best Management Practices in an Ultra- Urban Setting: Selection and Monitoring. Federal Highway Administration, U.S. Department of Transportation.	Capture of 12.7 mm (0.5 in) of runoff (first flush)	
Infiltration Basin	99	60 - 70				65 - 75	Schueler, T. 1987. Controlling urban runoff – a practical manual for planning and designing urban best management practices. Metropolitan Washington Council of Governments, Washington, DC.	FHWA, 1999. Stormwater Best Management Practices in an Ultra- Urban Setting: Selection and Monitoring. Federal Highway Administration, U.S. Department of Transportation.	Capture of 25.4 mm (1 in) of runoff	
Infiltration Basin	90	55 - 60				60 - 70	Schueler, T. 1987. Controlling urban runoff – a practical manual for planning and designing urban best management practices. Metropolitan Washington Council of Governments, Washington, DC.	FHWA, 1999. Stormwater Best Management Practices in an Ultra- Urban Setting: Selection and Monitoring. Federal Highway Administration, U.S. Department of Transportation.	Capture of 50.8 mm (2 in) of runoff	
Infiltration Basin	50-80	50-80				50-80	USEPA. Preliminary Data Summary of Urban Storm Water Best Management Practices. Aug 1999.			
RANGE	50 - 99	45 - 80				50 - 80				

		Pol	lutant Remo	val % Efficie	ency				
Туре	TSS	TN	NO ₃	NO _x	TKN	TP	Primary Source	Secondary Source	Comments
Subsurface nfiltration 3ed	90	60	27				Cahill Assoc. Technical BMP Manual & Infiltration Feasibility Report: Infiltration of Stormwater in Areas Underlain by Carbonate Bedrock within the Little Lehigh Creek Watershed. Nov 2002.		
Subsurface nfiltration 3ed	95	51				70	Chester County Conservation District. Chester County Stormwater BMP Tour Guide: Infiltration Beds. 2002.		
RANGE	90 - 95	51 - 60	27			70			

6.4.3 SUBSURFACE INFILTRATION BED

	Pollutant Removal % Efficiency								
Туре	TSS	TN	NO ₃	NOx	TKN	ТР	Primary Source	Secondary Source	Comments
Infiltration Trench		3.4	100		-12.3	4.5	Kuo, C.Y., G. D. Boardman and K.T. Laptos. 1990. Phosphorous and Nitrogen Removal Efficiencies of Infiltration Trenches. Dept. of Civil Engineering. VA Polytechnic Institute and State University. Prepared for: No. VA Planning District Commission, Occoquan Technical Advisory Committee and VA State Water Control Board.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	"49.5 hours detention time", soil type = loam; Percent efficiency calculated using event mean concentration (EMC) efficiency method.
Infiltration Trench		42.3	-100		100	100	Kuo, C.Y., G. D. Boardman and K.T. Laptos. 1990. Phosphorous and Nitrogen Removal Efficiencies of Infiltration Trenches. Dept. of Civil Engineering. VA Polytechnic Institute and State University. Prepared for: No. VA Planning District Commission, Occoquan Technical Advisory Committee and VA State Water Control Board.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	"47.75 hours detention time", soil type = sandy loam; Percent efficiency calculated using event mean concentration (EMC) efficiency method.
Infiltration Trench		50.5	82		70.1	100	Kuo, C.Y., G. D. Boardman and K.T. Laptos. 1990. Phosphorous and Nitrogen Removal Efficiencies of Infiltration Trenches. Dept. of Civil Engineering. VA Polytechnic Institute and State University. Prepared for: No. VA Planning District Commission, Occoquan Technical Advisory Committee and VA State Water Control Board.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	"51.5 hours detention time", soil type = sandy; Percent efficiency calculated using event mean concentration (EMC) efficiency method.
Infiltration Trench	50-80	50-80				15-45	USEPA. Preliminary Data Summary of Urban Storm Water Best Management Practices . Aug 1999.		
Infiltration Trench	90	60					Schueler, T.R., 1992. A Current Assessment of Urban Best Management Practices. Metropolitan Washington Council of Governments.	United States Environmental Protection Agency (USEPA). Storm Water Technology Fact Sheet: Infiltration Trench (EPA 832-F-99-019). 1999.	
WQ Trench	75	45 - 55				50 - 55	Schueler, T. 1987. Controlling urban runoff – a practical manual for planning and designing urban best management practices. Metropolitan Washington Council of Governments, Washington, DC.	FHWA, 1999. Stormwater Best Management Practices in an Ultra- Urban Setting: Selection and Monitoring . Federal Highway Administration, U.S. Department of Transportation.	Capture of 12.7 mm (0.5 in) of runoff (first flush)
WQ Trench	90	55 - 60				55 - 60	Schueler, T. 1987. Controlling urban runoff – a practical manual for planning and designing urban best management practices. Metropolitan Washington Council of Governments, Washington, DC.	FHWA, 1999. Stormwater Best Management Practices in an Ultra- Urban Setting: Selection and Monitoring. Federal Highway Administration, U.S. Department of Transportation.	Capture of 50.8 mm (2 in) of runoff
RANGE	50 - 90	3.4 - 80	(-100) - 100		(-12.3) - 100	4.5 - 100			

6 4 5	DAIN C	DIODET	
0.4.0		DIUNEI	

		Pol	lutant Remo	val % Efficie	ency				
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments
Rain Garden	53	49	16				Cahill Assoc. Technical BMP Manual & Infiltration Feasibility Report: Infiltration of Stormwater in Areas Underlain by Carbonate Bedrock within the Little Lehigh Creek Watershed. Nov 2002.		
Rain Garden	87						Davis, A.P. "Bioretention – Studies Completed by the University of Maryland" http://www.ence.umd.edu/~apdavi s/Biodata.htm. Updated: August 27, 2002.	Low Impact Development Center. "Watershed Benefits of Bioretention Techniques". http://www.lid- stormwater.net/bioretention/bio_b enefits.htm. Accessed: December 13, 2002.	
Rain Garden		57					Davis, A.P., M. Shokouhian, H. Sharma, and C. Minami. 2001. Laboratory Study of Biological Retention for Urban Stormwater Management. Water Environment Research. 73(1): 5-14.	Tetra Tech, Inc., 2003. Mecklenburg County Site Evaluation Tool Model Documentation.	
Rain Garden	91		-16			63	Hsieh, C. and A.P. Davis. Multiple- event Study of Bioretention for Treatment of Urban Storm Water Runoff. 2003. Percent efficiency calculated using mass efficiency method.		
Rain Garden	90						United States Environmental Protection Agency (USEPA). Storm Water Technology Fact Sheet: Bioretention (EPA 832-F- 99-012). 1999.		
RANGE	53 - 91	49 - 57	(-16) - 16			63			

6.4.6 DRY WEL SEEPAGE PIT

		Poll	lutant Remo	val % Efficie	ency				
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments
Dry Well	50-80	50-80				15-45	USEPA. Preliminary Data Summary of Urban Storm Water Best Management Practices. Aug 1999.		
RANGE	50 - 80	50 - 80				15 - 45			

6.4.7 CONSTRUCTED FILTER

	I	<u> </u>	ollutant Remo	val % Efficien	cy					
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments	
Filtering Practice	48					-78.5	Leif, W. 1999. Compost Stormwater Filter Evaluation. Snohomish County Public County Works. Everett, WA.	Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	# of storms = 8; Drainage area = 0.69acres; "Filter is 12" deep"; Percent efficiency calculated using event mean concentration (EMC) efficiency method.	
Organic Filter	98			32		88	Corsi, S. and S. Greb. 1997. Demonstration project of Wisconsin Department of Natural Resources, United States Geological Survey and the City of Milwaukee. Personal communication with R. Pitt. 1997. In: Multi-Chamber Treatment Train Developed for Stormwater Hot Spots. Watershed Protection Techniques. Center for Watershed Protection. February 1997.	¹ Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = City Maintenance yard (pavement); %Impervious Cover = 100%; "treatment provided for the first 1/2in of runoff. (80% of the annual water load)"; # of storms = 5; Percent efficiency calculated using event mean concentration (EMC) efficiency method.	
Organic Filter	88				61	47	Lower Colorado River Authority. 1997. Innovative NPS Pollution Control Program for Lake Travis in Central Texas. LCRA.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Impervious Cover = 82%; "Peat/sand filter media wit surface ED. Retrofit Site. Steep Slopes. Retention Capacity 1420f3"; # of storms = 21; Percent efficiency calculated using event mean concentration (EMC) officiency method	
Organic Filter	90				68	73	Lower Colorado River Authority. 1997. Innovative NPS Pollution Control Program for Lake Travis in Central Texas. LCRA.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Large parking lot; % Impervious Cover = 82%; "Peat/sand filter media wit surface ED. Retrofit Site. Steep Slopes. Retention Capacity 1420ft3"; # of storms = 21; Percent efficiency calculated using mass afficiency method	
Organic Filter	83		14			80	Critical Source Areas. The University of Alabama at Birmingham. In: Multi- Chamber Treatment Train Developed for Stormwater Hot Spots. Watershed Protection Techniques. Center for Watershed Protection. February 1997. 2(2): 445-440.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Parking Lot, vehicle service area; Treatment provided for 0.25-0.8in of rain; # of storms = 14; Percent efficiency calculated using event mean concentration (EMC) efficiency method.	
Organic Filter	85					80	Pitt, R. 1997. Multi-Chamber Treatment Train Developed for Stormwater Hot Spots. Watershed Protection Techniques. Center for Watershed Protection. February 1997. 2(3): 445-449	Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	Land Use = Commercial Parking Lot; # of storms = 7; Drainage area = 2.5 acres; Percent efficiency calculated using event mean concentration (EMC) efficiency method	
Organic Filter	95		-34			41	Stewart, W. 1992. Compost Stormwater Treatment System. W&H Pacific Consultants. Draft Report. Portland, OR.	Winer, R. 2000. National Poliutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	Land Use = 95%Residential, rest roadway; # of storms = 7, Drainage area = 73.9; "Compost media filter"; Percent efficiency calculated using event mean concentration (EMC) efficiency method	
Organic Media Filters	92		-145		57	49	Year Performance Summary of Stormwater Pollutant and Treatment – 185 th Avenue, Hillsboro, Oregon. Technical Memorandum. Stormwater	Federal Highway Administration. "Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring: Fact Sheet - Organic Media Eithers "	"3-year results for CSF® Type I system"	
Other Media Filters	65-100	15-45				<30	USEPA. Preliminary Data Summary of Urban Storm Water Best Management Practices, Aug 1999.			

6.4.7 CONSTRUCTED FILTER (cont.)

	Pollutant Removal % Efficiency								
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments
Packed Bed Filter	81	63	75				Egan, L., S. Burrougns and T. Attaway. 1995. Packed Bed Filter. Pp. 264-274 in Proceedings Fourth Biennial Stormwater Research Conference. October 19-20. Clearwater, FL. SW Florida Water Management District	Center for Watershed Protection. <i>Design of Stormwater Filtering Systems</i> . Dec 1996. (pg 4-8)	Percent efficiency calculated using mass efficiency method.
Sand Filter	98		64		65	66	Charbeneau. 1998. Evaluation of the Performance of Permanent Runoff Controls: Summary and Conclusions. Center for Transportation Research. Texas Department of Transportation.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = 67% Highway/33%Commercial; Drainage area = 82.95acres; # of storms = 10; Treament Vol = first 0.5in of runoff; Percent efficiency calculated using mass efficiency method.
Sand Filter	79	47	-53.3		70.6	65.5	Pollutant Removal Efficiences of Delaware Sand Filter BMPs. Final Report. Department of Transportation and Environmental Services. Alexandria, VA	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Parking Lot; STP Size = 477.6ft3; Drainage area = 0.7acres; # of storms = 20; "Perimeter sand filter"; Percent efficiency calculated using mass efficiency method.
Sand Filter	86	31	-5		48	19	City of Austin, TX. 1990. Removal Efficiences of Stormwater Control Structures. Final Report. Environmental Resource Management Division.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Multi-Tarmiy housing; Impervious Cover = 50%; # of storms = 18; Drainage area = 3.1acres; Treatment Vol = 0.5in; "Surface sand filter"; Percent efficiency calculated using mass efficiency method
Sand Filter	87	32	-79		62	61	City of Austin, TX. 1990. Removal Efficiences of Stormwater Control Structures. Final Report. Environmental Resource Management Division.	Winer, K. 2000. National Poliutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	Land Use = Road; Impervious Cover = 81%; # of storms = 16; Drainage area = 9.5acres; "Surface sand filter"; Percent efficiency calculated using mass efficiency method
Sand Filter	75	44	-13		64	59	City of Austin, TX. 1990. Removal Efficiences of Stormwater Control Structures. Final Report. Environmental Resource Management Division.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Mail 86%; Commercial Cover = 86%; # of storms = 18; Drainage area = 79acres; Treatment Vol = 0.5in; STP Size = 3.5acre/ft; "Surface sand filter"; Percent efficiency calculated using mass efficiency method
Sand Filter	92	71	23		90	80	City of Austin, TX. 1990. Removal Efficiences of Stormwater Control Structures. Final Report. Environmental Resource Management Division.	Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	Impervious Cover = 68%; # of storms = 17; Drainage area = 50acres; "Surface sand filter"; Percent efficiency calculated using mass efficiency method.
Sand Filters	70	21					United States Environmental Protection Agency (USEPA). Storm Water Technology Fact Sheet: Sand Filters (FPA 832-E-99-007) 1999		
Sand Filter	78	27	-100		57	27	Weiborn, C. and J. Veennuis. 1987. Effects of Runoff Controls on the Quantity and Quality of Urban Runoff in Two Locations in Austin, TX. USGS Water Resources Investigations Report. 87-4004	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Commercial; Drainage area = 80acres; # of storms = 22; "Surface sand filter"; Percent efficiency calculated using mass efficiency method.
Surface Sand Filters	50-80	<30				50-80	USEPA. Preliminary Data Summary of Urban Storm Water Best Management Practices, Aug 1999.		
RANGE	48 - 100	21 - 71	(-145) - 75	32	48 - 90	(-78.5) - 88			

6.4.8 VEGETATED SWALE

	Pollutant Removal % Efficiency									
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments	
100 Foot							Delaware DNREC and Brandywine			
Swale	60						Conservancy. Conservation Design for			
							Stormwater Management, Sep. 1997.			
200 Foot	83						Conservancy Conservation Design for			
Swale							Stormwater Management . Sep. 1997.			
							Dorman, M.E., J. Harrigan, R.F. Steg and			
							1. Quasebarth. 1989. Retention,			
Drainage	65		11				Detention and Overland Flow for			
Channel	60		11				Stermwater Runoff Vol. 1. Research			
							Report Federal Highway Administration			
							EHW/A/RD 80/202			
							Dakiand H. An evaluation of Stormwater			
Drainaga							Pollutant Removal Inrough Grassed			
Channel	33						International Symposium of Urban			
Channel							Hydrology, Hydraulics and Sediment			
							Control 1983			
							Occoquan Watershed Monitoring			
Drainage	21	27					Labortory (OWML). Final Report.			
Channel	51	57					Metropolitan Washington Council of			
							Governments Manassas VA 1983			
							Yourser, Y. et al. Best Management			
Drainaga							Practices – Removal of Highwy			
Channage		13	11				Contaminants by Roadside Swales. Final Report, University of Control Electide			
Channel							Elorida Department of Transportation			
							Orlando El 1985			
							Harper, H. 1988. Effects of Stormwater	Winer, R. 2000. National Pollutant	Land Use = Interstate highway, 70%	
							Quality Final Report Environmental	Removal Performance Database for	Pate = 13 $din/bour$. Time of	
Dry Swale	87	84	80			83	Research and Design Inc. Prenared for	Stormwater Treatment Practices, 2 nd	Concentration = 45min" Drainage area =	
							Elorida Department of Environmental	Edition. Center for Watershed Protection.	0.83acres: Percent efficiency calculated	
							Regulation	Ellicott City, MD.	using mass efficiency method	
							Kercher, W.C., J.C. Landon and R.	Removal Performance Database for	Land Use = Residential; Soil Type =	
Dry Swale	99	99	99			99	Massarelli. 1983. Grassy Swales Prove	Stormwater Treatment Practices 2nd	Sandy; # of storms = 13; drainage area =	
Dry Gwale	55	55	55			55	Cost-Effective for Water Pollution	Edition Center for Watershed Protection	14 acres; slope = 2%; Percent efficiency	
							Control. Public Works. Vol. 16: 53-55.	Ellicott City, MD	calculated using mass efficiency method.	
							Seattle Metro and Washington		parks: impenvious Cover = 47%: "grass	
							Department of Ecology. 1992.	Winer, R. 2000. National Pollutant	channel design 10 minute residence	
Grass							Biofiltration Swale Performance:	Removal Performance Database for	time for design storm: Drainage area =	
Channel	60			-25		45	Recommendations and Design	Stormwater Treatment Practices, 2"	15.5acres; slope = 4%; "Length 200ft. 5ft	
							Water Pollution Control Department	Edition. Center for Watersned Protection.	wide"; Percent efficiency calculated using	
							Seattle Washington	Ellicott City, MD.	event mean concentration (EMC)	
								winer, R. 2000. National Pollutant	%Impervious Cover = 20; "600ft long	
Grass							Goldberg. 1993. Dayton Avenue Swale	Removal Performance Database for	grass channel"; # of storms = 8;	
Channel	67.8			31.4		4.5	Biofiltration Study. Seattle Engineering	Stormwater Treatment Practices, 2 nd	Drainage area = 90acres; Percent	
onannei							Department. Seattle, WA.	Edition. Center for Watershed Protection.	efficiency calculated using event mean	
							Seattle Metro and Washington	Ellicott City_MD	cancentration (EMC) afficiency method,	
			1				Department of Ecology 1992	Winer, R. 2000, National Pollutant	parks; impervious Cover = 47%; "grass	
							Biofiltration Swale Performance	Removal Performance Database for	channel design. 10 minute residence	
Grass	83		1	-25		29	Recommendations and Design	Stormwater Treatment Practices. 2 nd	time for design storm; Drainage area =	
Channel							Considerations. Publication No. 657.	Edition. Center for Watershed Protection.	15.5acres; slope = 4%; "Length 200tt. 5tt	
							Water Pollution Control Department,	Ellicott City, MD.	event mean concentration (EMC)	
							Seattle Washington.	-	event mean concentration (EWIC)	

6.4.8 VEGETATED SWALE (cont.)

	Pollutant Removal % Efficiency								
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments
Grassed	20.65	15 45				15.45	USEPA. 1999. Preliminary Data		
Swales	30-05	15-45				15-45	Summary of Urban Stormwater BMPs.		
							Harper D.B. Pearce and R.D. Tolbert		
							1985 Best Management Practices		
Swales		24	-21				Removal of Highway Contaminants by		
							Roadside Swales, Final Report, Florida		
							Department of Transportation,		
							Harper D.B. Pearce and R.D. Tolbert		
							1985. Best Management Practices		
Swales		27	-2				Removal of Highway Contaminants by		
							Roadside Swales. Final Report. Florida		
							Department of Transportation,		
							Harper, D.B. Pearce, and R.D. Tolbert.		
							1985. Best Management Practices		
Swales		39	48				Removal of Highway Contaminants by		
							Roadside Swales. Final Report. Florida		
							Department of Transportation,		
							Harper, D.B. Pearce, and R.D. Tolbert.		
							1985. Best Management Practices		
Swales		61	57				Removal of Highway Contaminants by		
Swales							Roadside Swales. Final Report. Florida		
							Department of Transportation,		
							Touset, Y.A., M.P. wanielista, H.H.		
							Harper, D.B. Pearce, and R.D. Tolbert.		
							1985. Best Management Practices		
Swales		73	67				Removal of Highway Contaminants by		
							Roadside Swales. Final Report. Florida		
							Department of Transportation,		
							Youset, Y.A., M.P. wanielista, H.H.		
							Harper, D.B. Pearce, and R.D. Tolbert.		
							1985. Best Management Practices		
Swales		100	100				Removal of Highway Contaminants by		
							Roadside Swales. Final Report. Florida		
							Department of Transportation,		
							Barrett, M.E. et al. Evaluation of the		Site 1: Treatment ength = 7.5 to 8.8m
							Performance of Permanent Runoff		slope = 73% ; vegetation = buffalo grass:
Vegetated	87		50			44	controls: Summary and Conclusions.		higher traffic than site 2: Percent
Filter Strip	0.						Center for Research in Water Resources,	,	efficiency calculated using event mean
							University of Texas at Austin. Austin,		concentration (EMC) efficiency method.
	1	1				1	Barrett, M.E. et al. Evaluation of the		Site 2: Treatment ength = 7.8 to 9.1m
							Performance of Permanent Runoff		slope = 1.7%; vegetation = mixed; lower
Vegetated	85		23			34	controls: Summary and Conclusions.		traffic than site 1: Percent efficiency
Filter Strip						5-	Center for Research in Water Resources,		calculated using event mean
							University of Texas at Austin. Austin,		concentration (EMC) efficiency method
	L					1	TX: Nov 1007	I	(,,, moulou.

		P	ollutant Remo	val % Efficiend	;y				
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments
Vegetated Swales	81		38				United States Environmental Protection Agency (USEPA). Storm Water Technology Fact Sheet: Vegetated Swales (EPA 832-E-99-006) 1999		
Wet Swale	81	40	52			17	Harper, H. 1988. Effects of Stormwater Management Systems on Groundwater Quality. Final Report. Environmental Research and Design, Inc. Prepared for Florida Department of Environmental Regulation.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Length 2 roll, Land Ose – Interstate highway (100% Impervious); Treatment Vol= 2year critical velocity, 10 year capacity; Soil Type = saturated sandy; # of storms = 11; drainage area = 1.17 acres; slope = 1.8%; Percent efficiency calculated using mass efficiency method
WQ Swale	98		45		48	18	Dorman, W.E., 3. Harigan, K.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal from Highway Stormwater Runoff. Vol. 1. Research Report. Federal Highway Administration.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land use = highway, Impervious cover = 63%, soil type = sandy; length 185'; Age of facility = 5years
WQ Swale	80						Wang, T., D. Spyridaxis, B. Mar and R. Horner. 1981. Transport, deposition, and control of heavy metals in highway runoff. FHWA-WA-RD-39-10. Dept. of Civil Engineering. University of Washington. Seattle, WA	Center for Watershed Protection. Design of Stormwater Filtering Systems . Dec 1996. (pg 4-19)	
RANGE	30 - 99	13 - 100	(-21) - 100	(-25) - 31.4	48	4.5 - 99			

6.4.9 VEGETATE FILTER STRIP

TypeTSSTNNO3NOxTKNTPPrimary SourceSecondary SourceComments15 Foot Grass Filter Strip70Image: Secondary SourceImage: Secondary SourceImage: Secondary SourceImage: Secondary SourceComments30 Foot Grass Filter Strip84Image: Secondary SourceImage: Secondary So
15 Foot Grass 70 Klapproth, J.C. and J.E. Johnson. Understanding the Science Behind Riparian Forest Buffers: Effects on Water Quality, Virgina Tech. Oct 2000. 30 Foot Grass 84 Klapproth, J.C. and J.E. Johnson. Understanding the Science Behind Riparian Forest Buffers: Effects on Water Quality, Virgina Tech. Oct 2000. 75 Foot Filter 54 -27
15 Foot Grass 70 Understanding the Science Behind Filter Strip 70 <i>Understanding the Science Behind</i> 30 Foot Grass 84 <i>Water Quality</i> . Virging Tech. Oct 2000. 75 Foot Filter 54 -27
Filter Strip 70 Riparian Forest Buffers: Effects on Water Quality. Virgina Tech. Oct 2000. 30 Foot Grass Filter Strip 84 Understanding the Science Behind Riparian Forest Buffers: Effects on Water Quality. Virgina Tech. Oct 2000. 75 Foot Filter 54 -27
30 Foot Grass 84 Klapproth, J.C. and J.E. Johnson. Filter Strip 84 <i>Water Quality.</i> Virgina Tech. Oct 2000. 75 Foot Filter 54 -27
30 Foot Grass 84 Klapproth, J.C. and J.E. Johnson. Understanding the Science Behind Riparian Forest Buffers: Effects on Water Quality. Virging Tech. Oct 2000. 75 Foot Filter 54 -27
30 Foot Grass 84 Understanding the Science Behind Filter Strip Riparian Forest Buffers: Effects on Water Quality. Virgina Tech. Oct 2000 75 Foot Filter 54 -27 Center for Watershed Protection. Design
Filter Strip Filter Strip Filter Strip Filter Strip Filter Strip Filter Strip Filter Strip Filter Strip Filter Strip Filter Strip Filter Strip Filter Strip Filter Strip
75 Foot Filter 54 27 Center for Watershed Protection. Design
75 Foot Filter 54 Center for Watershed Protection. Design
54 -27 of Stormwater Eiltering Systems Dec
Strin Storini Waler Fillering Systems . Dec
1996. (pg 4-26)
150 Foot
Filter Strip 84 20 of Stormwater Filtering Systems. Dec
Grass/Grass-
Forest Filter 60-90
Strip Riparian Forest Burrers: Effects on
Water Quality Virgina Lech. Oct 2000.
Vegetated 70 20 0
Filter Strip 70 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Infiltration Feasibility Report: Infiltration of
Vegetated 75 45 22
Filter Strip
RANGE 54.90 30.45 (.27).22

6.6.1 CONSTRUCTED WETLAND

		P	Pollutant Remo	val % Efficien	су					
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments	
Constructed	50-80	<30				15-45	USEPA. 1999. Preliminary Data			
Extended Detention Wetland	24			35		16	Nutrient Removal from Storenwater Biors. Nutrient Removal from Storenwater Runoff by a Vegetated Collection Pond - The Mays Chapel Wetland Basin Project. Prepared for the City of Baltimore, Department of Public Works, Bureau of Water and Wastewater, Water Quality	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	Treatment volume = 0.1in/acre; Drainage area = 97acres	
Extended Detention Wetland	76				25	54	Barten, J.M. 1983. Treatment of Stormwater Runoff Using Aquatic Plants. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W. J.M. Kersnar and E.E. Dris coll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for the USEPA, Region V, Water Division, Watershed Management Unit. EPA/600 February	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	Treatment volume = 0.15in/acre; Drainage area = 1070acres	
Extended Detention Wetland	62		23		40	24	Hartsoe. 1989. The water Quality Performance of Select Urban Runoff Treatment Systems. Prepared for the Legislative Commission on Minnesota Resources. Metropolitan Council. St. Paul. MN. Publication No. 500.89.062a	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	# of storms = 10; Treatment volume = 0.1in/acre; Drainage area = 413acres	
Extended Detention Wetland	62	-2.1	1.2		15	8.3	Laboratory and George Mason University. 1990. Final Report: The Evaluation of a Created Wetland as an Urban Best Management Practice. Prepared for the Northern Virginia Soil and Works Concoursion Diritict	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	Impervious Cover = 30%; # of storms = 23; Treatment volume = 0.1in/acre; Drainage area = 40acres; "Data collected from Large storms >0.1watershed inch. Large storms overwhelm capacity of wetlands to remove nutrients."	
Extended Detention Wetland	93	76	68		81	76	Laboratory and George Mason University. 1990. Final Report: The Evaluation of a Created Wetland as an Urban Best Management Practice. Prepared for the Northern Virginia Soil and Water Consequeitan District	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	Impervious Cover = 30%; # of storms = 23; Treatment volume = 0.1in/acre; Drainage area = 40acres; "Data collected from Small storms <0.1watershed inch."; Percent efficiency calculated using mass efficiency method.	
Shallow Marsh	65	22.8	54.9	54.5		39.1	Atnanas, C. and C. Stevenson, 1991. The Use of Artificial Wetlands in Treating Stormwater Runoff. Prepared for the Maryland Sediment and Stormwater Administration. Maryland Department of the Environment	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = High School root, parking lot, athletic; Surface area of wetland = 0.6acres; Treatment volume = 0.5in/acre; Drainage area = 16acres; Percent efficiency calculated using mass efficiency method	
Shallow Marsh	37.5	13	25.5		11.5	47.5	Blackburn, R., P.L. Pimentel and G.E. French. 1986. Treament of Stormwater Runoff Using Aquatic Plants. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W. J.M. Kersnar and E.E. Dris coll (Eds.). Woodward- Clyde Consultants. Portland, Oregon. Prepared for the USEPA, Region V, Water Division, Watershed Management	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land use = Golf Course; Size of Wetland = 296acres; # of storms = 72; Treatment volume = 1in; Drainage area = 2340acres; Percent efficiency calculated using event mean concentration (EMC) efficiency method.	
Shallow Marsh	86	46		94	34	70	Carr, D. and B. Rushton. 1995. Integrating a Herbaceous Wetland into Stormwater Management. Stormwater Research Program. Southwest Florida Water Management District Brooksville	Winer, K. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection.	# of storms = 81; Drainage area = 15.3; STP size = 3acres; Percent efficiency calculated using mass efficiency method.	

6.6.1 CONSTRUCTED WETLAND (cont.)

	Pollutant Removal % Efficiency									
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments	
Shallow Marsh	82.9	-1.6	80.2			7	An per, Fi.H., W.F. Wantensta, B.W. Fries and D.M. Baker. 1986. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W. J.M. Kersnar and E.E. Dris coll (Eds.). Woodward- Clyde Consultants. Portland, Oregon. Prepared for the USEPA, Region V, Water Division, Watershed Management Usit, ED4 (200 Except 4000	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	"Runoff enters through a small shallow canal. This is a NATURAL WETLAND." Land Use = Large Residential Community; Treatment Volume = 1.08in/acre; Drainage area = 55.4acres; STP size = 2.47acres; Percent efficiency calculated using mass efficiency method.	
Shallow Marsh	85.5		67			75	Hey, D.L., A.L. Kenimer and K.R. Barrett. 1994. Water Quality Improvement by Four Experimental Wetlands Ecological Engineering Vol. 3: 381-397.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	20%Urban, "5 - 8.6 acre wetland. Max depth 5ft. Subject to low flow conditions (2.8-6.3 in/week)" Drainage area = 128000acres; Percent efficiency calculated using mass efficiency method.	
Shallow Marsh	87		82.5			77.5	Hey, D.L., A.L. Kenimer and K.R. Barrett. 1994. Water Quality Improvement by Four Experimental Wetlands Ecological Engineering Vol. 3: 381-397.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	Wetland 1. Land USE = 80%Agriculture, 20%Urban; "5 - 8.6 acre wetland. Max depth 5ft. Subject to high flow conditions (13.4 - 38.2 in/week)" Drainage area = 128000acres; Percent efficiency calculated using mass efficiency method.	
Shallow Marsh	95.5		86			87	Hey, D.L., A.L. Kenimer and K.R. Barrett. 1994. Water Quality Improvement by Four Experimental Wetlands Ecological Engineering Vol. 3: 381-397.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	Wetland Z. Land Use = 80% Agriculture, 20% Urban; "5 - 8.6 acre wetland. Max depth 5ft. Subject to high flow conditions (13.4 - 38.2 in/week)" Drainage area = 128000acres; Percent efficiency calculated using mass efficiency method.	
Shallow Marsh	99.5		99			99.5	Hey, D.L., A.L. Kenimer and K.R. Barrett. 1994. Water Quality Improvement by Four Experimental Wetlands Ecological Engineering Vol. 3: 381-397.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	Wetland 3. Land USE = 80%Agriculture, 20%Urban; "5 - 8.6 acre wetland. Max depth 5ft. Subject to low flow conditions (2.8-6.3 in/week)" Drainage area = 128000acres; Percent efficiency adculated using mass efficiency method.	
Shallow Marsh	94					78	Hickok, E.A., M.C. Hannaman and N.C. Wenck. 1977. Urban Runoff Treatment Methods. Volume 1: Non-structural Wetland Treatment. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W. J.M. Kersnar and E.E. Dris coll (Eds.). Woodward- Clyde Consultants. Portland, Oregon. Prepared for the USEPA, Region V, Water Division, Watershed Management	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land use = 47%Residential. "This is a NATURAL WETLAND." STP size = 7.6acres. Treatment volume = 1.25 in/acre; Drainage area = 73.2acres;	
Shallow Marsh	20			67		33	Koon, J. 1995. Evaluation of Water Quality Ponds and Swales in the Issaquah/East Lake Sammamish Basins. King County Surface Water Management and Washington Department of Ecology. Seattle, WA.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	with emergent wetlands, inst cen 2rt deep poor with emergent wetlands; second cell is free." # of storms = 5; Design Basis = 2 & 25 year quantity control only; Drainage area = 7.7acres; Percent efficiency calculated using event mean concentration (EMC) officiency method	
Shallow Marsh		54	78				Phipps, R.G. and W.G. Crumpton. 1994. Factors Affecting Nitrogen Loss in Experimental Wetlands With Different Hydrologic Loads. Ecological Engineering. December 1994. Vol. 3(4): 399.408.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	High Hydraulic Loading." Average Detention Time = 12days; Land Use = 80%Ag; STP size = 5.9acres, avg 24in deep; Drainage area = 128000acres; Percent efficiency calculated using mass efficiency method	
Shallow Marsh		59	84				Frupps, R.G. and W.G. Crumpton. 1994. Factors Affecting Nitrogen Loss in Experimental Wetlands With Different Hydrologic Loads. Ecological Engineering. December 1994. Vol. 3(4): 399-408	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	High Hydraulic Loading." Average Detention Time = 13days; Land Use = 80%Ag; STP size = 4.7acres, avg 28in deep; Drainage area = 128000acres; Percent efficiency calculated using mass efficiency method	

6.6.1 CONSTRUCTED WETLAND (cont.)

		P	ollutant Remo	val % Efficien	су					
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments	
Shallow Marsh		75	95				Phipps, R.G. and W.G. Crumpton. 1994. Factors Affecting Nitrogen Loss in Experimental Wetlands With Different Hydrologic Loads. Ecological Engineering. December 1994. Vol. 3(4): 399-408	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	"Low Hydraulic Loading." Average Detention Time = 95days; Land Use = 80%Ag; STP size = 5.9acres, avg 28in deep; Drainage area = 128000acres; Percent efficiency calculated using mass efficiency method	
Stormwater Wetland	67	28					Center for Watershed Protection, 1997. National Pollutant Removal Performance Database for Stormwater Best Management Practices. Prepared for the Chesapeake Research Consortium.	United States Environmental Protection Agency (USEPA). <i>Storm Water</i> <i>Technology Fact Sheet: Storm Water</i> <i>Wetlands</i> (EPA 832-F-99-025) 1999.		
Stormwater Wetland	56		20			-2	Wetlands for Controlling Stormwater Pollution. Strecker, E.W. J.M. Kersnar and E.E. Dris coll (Eds.). Woodward- Clyde Consultants. Portland, Oregon. Prepared for the USEPA, Region V, Water Division, Watershed Management HetingTA (200, Spectrary (1902), p. 0)	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	# of storms = 13; Treatment Volume = 0.03in/acre; Drainage Area = 214.8acres "Channelization reduced effectiveness."	
Stormwater Wetland	14		4			-2	Wetlands for Controlling Stormwater Pollution. Strecker, E.W. J.M. Kersnar and E.E. Dris coll (Eds.). Woodward- Clyde Consultants. Portland, Oregon. Prepared for the USEPA, Region V, Water Division, Watershed Management Unit, EDM (200 Eptruge, 1002)	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	# of storms = 13; Treatment Volume = 0.01in/acre; Drainage Area = 461.7acres "Channelization reduced effectiveness."	
Stormwater Wetland	57			67		57	Rushton, B. and C. Dye. 1993. An In- Depth Analysis of a Wet Detention Stormwater System. Southwest Florida Water Management District. Brooksville, FL.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Ellicott City, MD.	For storms = 25, Drainage Area = 6acres; Surface Area = 0.32acres, Max Depth = 18ft; Runoff conveyed by 200ft drainage channel; BMP apprx. 3-5 years old.; Percent efficiency calculated using event mean concentration (EMC)	
Stormwater Wetland	-1.32					14.86	Yu, S; G. Fitch, and T. Earles. 1998. Constructed Wetlands for Stormwater Management. Virginia Transportation Research Council. Charlottesville, VA.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection.	Land Use = parking lot and highway; # of storms = 5; STP size = 0.7acres; Percent efficiency calculated using event mean concentration (EMC) efficiency method.	
Stormwater Wetland	30.1					27.46	Yu, S; G. Fitch, and T. Earles. 1998. Constructed Wetlands for Stormwater Management. Virginia Transportation Research Council. Charlottesville, VA.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection.	Land Use = parking lot and highway; # of storms = 5; STP size = 0.7acres; Percent efficiency calculated using mass efficiency method.	
Stormwater Wetland	52.02					68.09	Yu, S; G. Fitch, and T. Earles. 1998. Constructed Wetlands for Stormwater Management. Virginia Transportation Research Council. Charlottesville, VA.	winer, K. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Fillicott City. MD	Land Use = Highway; # of storms = 13; STP size = 5acres; Percent efficiency calculated using mass efficiency method.	
Stormwater Wetland	56.96					68.61	Yu, S; G. Fitch, and T. Earles. 1998. Constructed Wetlands for Stormwater Management. Virginia Transportation Research Council. Charlottesville, VA.	Winer, K. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2nd Edition. Center for Watershed Protection. Filicott City. MD	Land Use = Highway; # of storms = 13; STP size = 5acres; Percent efficiency calculated using event mean concentration (EMC) efficiency method.	
RANGE	(-1.32) - 99.5	(-2.1) - 76	1.2 - 99	35 - 94	11.5 - 81	(-2) - 95.5				

6.6.2 WET POND / RETENTION BASIN

	Pollutant Removal % Efficiency										
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments		
Retention Basin	50-80	30-65				30-65	USEPA. 1999. Preliminary Data Summary of Urban Stormwater BMPs.				
Wet Extended Detention Pond	60.4	16	18.2			46.2	and S.K. Liehr. 1996. Draft Report. Evaluation of Ponds and Wetlands For Protection of Public Water Supplies. Water Resources Research Institute of the Univeristy of North Carolina. Department of Civil Engineering. North	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Dairy Farms, woodland; Impervious Cover = 16%; Percent efficiency calculated using mass efficiency method.		
Wet Extended Detention Pond	54	39	45		26	46	City of Austin, TX. 1991. Design Guidelines for Water Quality Control Basins. Public Works Department. Austin, TX.	Winer, R. 2000. National Poliutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	Impervious cover = 39%		
Wet Extended Detention Pond	87			24	59	79	Tellows, D., W. Llang, S. Ristic, and M. Thompson. 1999. Performance Assessment of MTOs Rouge River, Highway 40, Stormwater Management Pond. SWAMP. Ontario Ministry of Environment and Energy	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Mostly residential; Impervious Cover = 34%; Percent efficiency calculated using mass efficiency method.		
Wet Extended Detention Pond	83	55		85	52	52	Lower Colorado River Authority. 1997. Innovative NPS Pollution Control Program for Lake Travis in Central Texas. LCRA.	Wher, K. 2000. National Poliutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	Land Use = parking lot/commercial		
Wet Extended Detention Pond	98	54				79	Ontario Ministry of the Environment. 1991. Stormwater Quality Best Management Practices. Marshall Macklin Monaghan Limited. Toronto, Ontario.	Wher, R. 2000. National Poliutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.			
Wet Extended Detention Pond	61			63		56	The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10-12, 1995.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Impervious Cover = 30%		
Wet Extended Detention Pond	67			61		57	The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10-12, 1995.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Impervious Cover = 30%; Residence time = 5 days		
Wet Extended Detention Pond	69	28		67	25	75	The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10-12, 1995.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Impervious Cover = 30%; Residence time = 5 days		
Wet Extended Detention Pond	71			64		62	Rushfoll, B., C. Miller and H. Hull. 1995. The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10-12, 1995. Houstop TY	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Impervious Cover = 30%		
Wet Extended Detention Pond	94			88		90	The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10-12, 1995.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Impervious Cover = 30%; Land Use = rooftops, parking lots, vehicle storage; Residence Time = 14days		

6.6.2 WET POND / RETENTION BASIN (cont.)

		P	ollutant Remo	val % Efficien	су						
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments		
Wet Extended Detention Pond	95			88		89	The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10-12, 1995. Houston TX	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection Ellicott City, MD.	Impervious Cover = 30%; Land Use = rooftops, parking lots, vehicle storage; Residence Time = 14days		
Wet Extended Detention Pond	76		75		65	70	Field Testing of Selected Urban BMPs in Critical Water Issues and Computer Applications. In Proceedings of the 15th Annual Water Resources Conference. American Society of Civil Engineers, New York, NY	Federal Highway Administration (FHWA). "Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring: Fact Sheet -Detention Ponds." U.S. Department of Transportation.			
Wet Pond	46		36		14	14 37 City of Atistih. 1990. Removal Efficiencies of Stormwater Control Structures. Environmental Resources Management Division, Environmental and Conservation Services Department, City of Austin, Austin, TX., Federal Highway Administration (FHWA). 14 37 Structures. Environmental Resources Management Division, Environmental and Conservation Services Department, City of Austin, Austin, TX., Federal Highway Administration (FHWA).					
Wet Pond	94		64		44	81	IV of Austin. 1999(plain). transportation haracterization of Stormwater Pollution Federal Highway Administration (FHWA). r Austin, Texas Area. Environmental sources Management Division, hvironmental and Conservation "Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring: Fact Sheet -Detention ervices Department, City of Austin, sign, TY Federal Highway Administration (FHWA). "Stormwater Best Management Division, hvironmental and Conservation "Monitoring: Fact Sheet -Detention prices Department, City of Austin, sign, TY Transportation.				
Wet Pond	68	12		93	-31	55	the Water Management System at a Single Family Residential Site: Water Quality Analysis for Selected Storm Events at Timbercreek Subdivision in Boca Raton, FL. South Florida Water	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection Ellicott City, MD.	Land Use = single family residential; Soil type = group A; Treatment Vol = 3.11in/acre; Percent efficiency calculated using event mean concentration (EMC) efficiency method.		
Wet Pond	54			97	68	69	Dorman, M.E., J. Harugan, K.F. Steg, and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal from Highway Stormwater Runoff. Vol. 1. Research Report. Federal Highway Administration. ELWA JRD 89/202	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection Ellicott City, MD.			
Wet Pond	65			61	23	25	Dofinan, W.E., J. Hartigan, R.F. Steg, and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal from Highway Stormwater Runoff. Vol. 1. Research Report. Federal Highway Administration. EHWA/RD 80/202	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection Ellicott City, MD.	Land Use = Highway; Percent efficiency calculated using mass efficiency method.		
Wet Pond	32	6	-1		7	12	Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection Ellicott City, MD.			
Wet Pond	32		7		14	18	Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection Ellicott City, MD.			

6.6.2 WET POND / RET NTION BASIN (cont.)

		Р	ollutant Remo	val % Efficiend	cy				
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments
Wet Pond	60					45	Discoli, E.D. 1985. Periormance of Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	
Wet Pond	81	37			27	54	Diffcon, E.D. 1983. Performance of Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	
Wet Pond	84					34	Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	
Wet Pond	91	62	66		60	79	Discoli, E.D. 1985. Periorimance of Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	
Wet Pond	54	16		24		30	Gain, S.W. The effects of Flow-Path Modifications on Urban Water-Quality Constituent Retention in Urban Stormwater Detention Pond and Wetland System, Orlando, Florida. Florida Departemtn of Transportation, Orlando,	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	"Pond was modified to increse detention time and was previously studied by Martin and Smoot (1988)." Percent efficiency calculated using event mean concentration (EMC) efficiency method.
Wet Pond	85		92		26	54	Harper, H.H., and J.L. Herr. 1993. Treatment Efficiencies of Detention with Filtration Systems. Environmental Research and Design Inc. Orlando, Fl	Claytor, Richard, and T. Schueler, 1996. Design of Stormwater Filtering Systems. Center for Watershed Protection. Silver Spring, MD	
Wet Pond	7			23		40	Efficiency of a Stormwater Detention Pond in Reducing Loads of Chemical and Physical Constituents in Urban Streamflow, Pinellas County, Florida. U.S. Geological Survey. Water Resources Investigations Report: 94- 4347. Tellopaceoc. El	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	"Very large online wet pond with detention" Percent efficiency calculated using event mean concentration (EMC) efficiency method.
Wet Pond	45			36		45	Efficiency of a Stormwater Detention Pond in Reducing Loads of Chemical and Physical Constituents in Urban Streamflow, Pinellas County, Florida. U.S. Geological Survey. Water Resources Investigations Report: 94- 1317. Tellebascoe El	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	"Very large online wet pond with detention"
Wet Pond	80			62	0	80	Liang, W. 1996. Performance Assessment of an Off-Line Stormwater Management Pond. Ontario Ministry of Environment and Energy.	Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	Land Use = Residential; Impervious Cover = 55%; Residential cover = 100%; Soil Type = clay till and clay loam

6.6.2 WET POND / RETENTION BASIN (cont.)

		P	ollutant Remo	val % Efficien	cy .					
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments	
Wet Pond	85						NC DENR, 1999. North Carolina Stormwater Best Management Practices Manual. Division of Water Quality.			
Wet Pond	85	30	24		31	48	Hartsoe. 1989. The Water Quality Performance of Select Urban Runoff Treatment Systems. Prepared for the Legislative Commission on Minnesota Resources. Metropolitan Council. St. Paul MN. Publication No. 500. 89.0623	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Age of Facility = 4years; Percent efficiency calculated using mass efficiency method.	
Wet Pond	90	41	10		50	61	Hartsoe. 1989. The Water Quality Performance of Select Urban Runoff Treatment Systems. Prepared for the Legislative Commission on Minnesota Resources. Metropolitan Council. St. Paul MN. Publication No. 500.89.0623	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Age of Facility = 6years	
Wet Pond	-33.3	32				39	Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Medium density residential; Impervious cover = 25%	
Wet Pond	85	34				86	Cocoquan watershee Monitoring Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments. Manassas VA	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Agriculture	
Wet Pond	80-90						United States Environmental Protection Agency (USEPA). Storm Water Technology Fact Sheet: Wet Detention Ponds (EPA 832-F-99-048) 1999			
Wet Pond	62				21	36	Wu, J. 1989. Evaluation of Detention Basin Performance in the Piedmont region of North Carolina. North Carolina Water Resources Research Institute. Report No. 89-248. Raleigh, NC.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land use = multi-unit housing, woodiand; Impervious cover = 38%; Soil type = clay; Surface area = 3.3 acres, Mean pond depth = 3.8'; Volume=12.3acre feet; "No geese present." Percent efficiency calculated using mass	
Wet Pond	93				32	45	Wu, J. 1989. Evaluation of Detention Basin Performance in the Piedmont region of North Carolina. North Carolina Water Resources Research Institute. Report No. 89-248. Raleigh, NC.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land use = mixed residential, impervious cover = 46%; Residential = 100%; Pond = 4.9 acres; Mean pond depth = 8'; Volume = 38.8 acre feet; "Geese population present increase N and P values." Percent efficiency calculated using mass officiency method.	
RANGE	(-33.3) - 98	6 - 65	(-1) - 92	23 - 97	(-31) - 68	12 - 90				

6.6.3 DRY EXTENDED DETENTION BASIN

	Pollutant Removal % Efficiency										
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments		
Dry Detention Basins	30-65	15-45				15-45	USEPA. 1999. Preliminary Data Summary of Urban Stormwater BMPs.				
Dry Detention Pond	96		64		44	81	S.L. Laio. 1994. Field Test of Stormwater Best Management Practices in Watershed Wastewater Treatment. In Proceedings of the 1994 National Conference on Environmental Engineering. American Society of Civil	Federal Highway Administration (FHWA). "Stormwater Best Management Practices in an Ultra-Urban Setting: Selection and Monitoring: Fact Sheet -Detention Ponds." U.S. Department of Transportation.	"Removal efficiencies based on mass loading."		
Dry Extended Detention Pond	87		-10			26	Baltimore Department of Public Works. 1989. Detention Basin Retrofit Project and Monitoring Study Results. Water Quality Management Office. Baltimore, MD	Winer, K. 2000. National Poliutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	# of storms = 9; Treatment Vol = 0.50in/acre; drainage area = 16.8acres		
Dry Extended Detention Pond	89		-3		26	51	Barrett, M.E. et al., 1997. Evaluation of the Performance of Permanent Runoff Controls: Summary and Conclusions, CRWR Online Report 97-3. Center for Research in Water Resources, Bureau of Engineering Research, The University of Torace at Auctin, TX		Land Use = Highway; Percent efficiency calculated using mass efficiency method.		
Dry Extended Detention Pond	30	35	52			18	City of Austin, TX. 1991. Design Guidelines for Water Qualit Control Basins. Public Works Department. Austin, TX.	Winer, K. 2000. National Poliutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	# of storms = 17; Treatment Vol = 0.50in/acre; drainage area= 28 acres		
Dry Extended Detention Pond	47					21	Miller, T. 1987. Appraisal of Storm-Water Quality Near Salem, Oregon. US Geological Survey. Water Resources Report 87-4064.	Winer, K. 2000. National Poliutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	Impervious = 53%; Residential = 39%; Commercial = 38%; Industrial = 1%; # of storms = 11; soil = HSG-C; Drainage area = 512acres		
Dry Extended Detention Pond	51.5	42.5				48	Laboratory. 1987. Final Report: London Commons Extended Detention Facility. Urban BMP Research and Demonstration Project. Virginia Tech University Manassas VA	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	# of storms = 27; Treatment Vol = 0.22in/acre; detention provided up to 20hours; drainage area = 11.4 acres		
Dry Extended Detention Pond	70	24			30	13	Design of Extended Detention Wet Pond Systems. In: Design of Urban Runoff Quality Controls. L.L. Roesner, B. Urbonas and M.B. Sonnen (Eds.). American Society of Civil Engineers. New York, NY	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	# of storms = 25; Treatment Vol = 0.30in/acre; drainage area = 34acres		
Dry Extended Detention Pond	71	26	-2			14	Stanley, D. 1994. An Evaluation of the Pollutant Removal of a Demonstration Urban Stormwater Detention Pond. Albermarle-Pamlico Estuary Study. APES Report 94-07.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Impervious Cover = 31%; Land Use = Residential/Commerical; # of storms = 8; Treatment Vol = 72hours detention for the first 0.5in; drainage area = 200acres; Percent efficiency calculated using mass efficiency method		
RANGE	30 - 96	15 - 45	(-10) - 64		26 - 44	13 - 81					

6.6.4 WATER QUALITY FILTER

		P	ollutant Remo	val % Efficiend	;y				
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments
Catch Basins	60 - 97						Aronson, G. et al. Evaluation of Catch Basin Performance for Urban Stormwater Pollution Control. EPA-600/2- 83-043	Stormwater Manager's Resource Center (SMRC). <i>Pollution Prevention Fact</i> <i>Sheet: Catch Basins.</i>	Only very small storms used
Catch Basins	10 - 25					5 - 10	Pitt, K. and G. Snawley, 1962. A Demonstration of Non-Point Pollution Management on Castro Valley Creek, Alameda County Flood Control District (Hayward, California) and U.S. EPA, Washington, DC	Stormwater Manager's Resource Center (SMRC). Pollution Prevention Fact Sheet: Catch Basins.	
Catch Basins	32						Pitt, R. et al. 1997. Guidance Manual for Integrated Wet Weather Flow Collection and Treamtne Systems for Newly Urbanized Areas. US EPA. Office of Research and Development. Cincinnati, OH	Stormwater Manager's Resource Center (SMRC). Pollution Prevention Fact Sheet: Catch Basins.	
RANGE	10 - 97					5 - 10			

6.7.1 RIPARIAN BU ER RESTORATION

		P	ollutant Remo	val % Efficiend	ey 🛛							
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments			
25' buffer	57	27				34	Desponnet, A., P. Pogue, V. Lee, and N. Wolff. 1994. Vegetated Buffers in the Coastal Zone: An Annotated Review and Bibliography. Coastal Resources Center, University of RI	Schueler, T. 1995. Site Planning for Urban Stream Protection. The Center for Watershed Protection.				
50' buffer	62	31				38	Desbonnet, A., P. Pogue, V. Lee, and N. Wolff. 1994. Vegetated Buffers in the Coastal Zone: An Annotated Review and Bibliography. Coastal Resources Center, University of RI	Schueler, T. 1995. Site Planning for Urban Stream Protection. The Center for Watershed Protection.				
75' buffer	65	33				41	Desbonnet, A., P. Pogue, V. Lee, and N. Wolff. 1994. Vegetated Buffers in the Coastal Zone: An Annotated Review and Bibliography. Coastal Resources Center, University of RI	Schueler, T. 1995. Site Planning for Urban Stream Protection. The Center for Watershed Protection.				
100' buffer	67	34				43	Desponnet, A., P. Pogue, V. Lee, and N. Wolff. 1994. Vegetated Buffers in the Coastal Zone: An Annotated Review and Bibliography. Coastal Resources Center, University of RI	Schueler, T. 1995. Site Planning for Urban Stream Protection. The Center for Watershed Protection.				
200' buffer	72	38				47	Desbonnet, A., P. Pogue, V. Lee, and N. Wolff. 1994. Vegetated Buffers in the Coastal Zone: An Annotated Review and Bibliography. Coastal Resources Center, University of RI	Schueler, T. 1995. Site Planning for Urban Stream Protection. The Center for Watershed Protection.				
Deciduous Forest Buffers		68					Lowrance, R., R. Todd, J. Fall, Jr., O. Hendrickson, Jr., R. Leonard, and L. Asmussen. 1984b. Riparian forests as nutrient filters in agricultural watersheds. Bioscience 34:374-377	Klapproth, J.C. and J.E. Johnson. Understanding the Science Behind Riparian Forest Buffers: Effects on Water Quality. Virgina Tech. Oct 2000.				
Hardwood Riparian Area	84-90						Cooper, J.R., J.W. Gilliam, R.B. Daniels, and W.P. Robarge. 1987. Riparian areas as filters for agricultural sediment. Soil Science Society of America Journal 51:416-420	Klapproth, J.C. and J.E. Johnson. Understanding the Science Behind Riparian Forest Buffers: Effects on Water Quality. Virgina Tech. Oct 2000.				
Riparian Buffer			95				Weller. 1993. Nutrient interception by a riparian forest receiving inputs from adjacent croplands. Journal of Environmental Quality 22:467,473	Klapproth, J.C. and J.E. Johnson. Understanding the Science Behind Riparian Forest Buffers: Effects on Water Quality. Virgina Tech. Oct 2000.				

6.7.1 RIPARIAN BUFFER RESTORATION (con't.)	

		Р	ollutant Remo	val % Efficien	су				
Туре	TSS	TN	NO ₃	NOx	TKN	TP	Primary Source	Secondary Source	Comments
Riparian Buffer		89					Peterjohn, W.I. and D.L. Correll. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65:1466-1475	Klapproth, J.C. and J.E. Johnson. Understanding the Science Behind Riparian Forest Buffers: Effects on Water Quality. Virging Tech. Oct 2000	
Riparian Buffer			48				Snyder, N.J., S. Mostaghimi, D.F. Berry, R.B. Reneau, E.P. Smith. 1995. Evaluation of a riparian wetland as a naturally occurring decontamination zone. Pages 259-262. In: Clean Water, Clean Environment - 21st Century. Volume III: Practices, Systems, and Adoption. Proceedings of a conference March 5-8, 1995 Kansas City, Mo. American Society of Agricultural	Klapproth, J.C. and J.E. Johnson. Understanding the Science Behind Riparian Forest Buffers: Effects on Water Quality . Virgina Tech. Oct 2000.	
Switchgrass Buffer (7.1m)	95	80	62			78	Lee, K.H., T.M. Isennart, and K.C. Schultz. "Sediment and nutrient removal in an established multi-species riparian buffer," Journal of Water Conservation, Vol. 58. No. 1	SWCS, 2003. Soil and Water Conservation Society.	
Switchgrass/ Woody Buffer (16.3m)	97	94	85			91	Lee, K.H., T.M. Isenhart, and R.C. Schultz. "Sediment and nutrient removal in an established multi-species riparian buffer," Journal of Water Conservation, Vol. 58 No. 1	SWCS, 2003. Soil and Water Conservation Society.	
RANGE	57 - 97	27 - 94	48 - 95			34 - 91			

BMP Pollutant Removal Efficiencies-Inflow vs. Outflow Pollutant concentrations

6.4.4 INFILT	RATION T	RENCH

	UNITS ARE IN MG/L UNLESS OTHERWISE NOTED														
	1	SS		TN	1	NO ₃	1	NO _x TKN TP							
Type	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Primary Source	Secondary Source	Comments
Infiltration Trench			6.59	3.8	0.95	3.8					0.24	0	Kuo, C.Y., G. D. Boardman and K.T. Laptos. 1990. Phosphorous and Nitrogen Removal Efficiencies of Infiltration Trenches. Dept. of Civil Engineering. VA Polytechnic Institute and State University. Prepared for: No. VA Planning District Commission, Occoquan Technical Advisory Committee and VA State	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	"47.75 hours detention time", soil type = sandy loam
Infiltration Trench			5.38	5.2	0.75	0					0.66	0.63	Kuo, C.Y., G. D. Boardman and K.T. Laptos. 1990. Phosphorous and Nitrogen Removal Efficiencies of Infiltration Trenches. Dept. of Civil Engineering. VA Polytechnic Institute and State University. Prepared for: No. VA Planning District Commission, Occoquan Technical Advisory Committee and VA State	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	"49.5 hours detention time", soil type = loam
Infiltration Trench			2.04	1.01	0.5	0.09					0.2	0	Kuo, C.Y., G. D. Boardman and K.T. Laptos. 1990. Phosphorous and Nitrogen Removal Efficiencies of Infiltration Trenches. Dept. of Civil Engineering. VA Polytechnic Institute and State University. Prepared for: No. VA Planning District Commission, Occoquan Technical Advisory Committee and VA State	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	"51.5 hours detention time", soil type = sandy

6.4.5 RAIN GARDEN

	UNITS ARE IN MG/L UNLESS OTHERWISE NOTED														
	٦	SS		TN	1	1O ₃	NO _x		TKN		TP				
Туре	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Primary Source	Secondary Source	Comments
Rain Garden	87.4g	7.6g			1.60g	1.85g					1.62g	0.60g	Hsien, C. and A.P. Davis. Multiple-event Study of Bioretention for Treatment of Urban Storm Water Runoff. 2003. Percent efficiency calculated using mass efficiency method		

	6.4.7 CONSTRUCTED FILTER **UNITS ARE IN MG/L UNLESS OTHERWISE NOTED**														
	1	SS		TN	N	1O ₃	N	NO _x	1	KN		TP			
Type	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Primary Source	Secondary Source	Comments
Organic Filter	35.5	16											Leif, W. 1999. Compost Stormwater Filter Evaluation. Snohomish County Public County Works. Everett, WA.	Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	# of storms = 8; Drainage area = 0.69acres; "Filter is 12" deep";
Organic Filter	49	6	1.76	0.858			0.481	0.552					Lower Colorado River Authority. 1997. Innovative NPS Pollution Control Program for Lake Travis in Central Texas. LCRA.	Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	Land Ose = Large parking lot; % Impervious Cover = 82%; "Peat/sand filter media wit surface ED. Retrofit Site. Steep Slopes. Retention Capacity 1420ft3"; # of storms = 21
Organic Filter	39.95	4.47					0.3	0.4					Stewart, W. 1992. Compost Stormwater Treatment System. W&H Pacific Consultants. Draft Report. Portland, OR.	Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	Land Use = 95%Residential, rest roadway; # of storms = 7, Drainage area = 73.9; "Compost media filter"
Sand Filter	204	3.5	2.83	1.065			1.24	0.474					Barrett, M.; M. Keblin; J. Malina; R. Charbeneau. 1998. Evaluation of the Performance of Permanent Runoff Controls: Summary and Conclusions. Center for Transportation Research. Texas Department of Transportation. University of	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = 67% Highway/33%Commercial; Drainage area = 82.95acres; # of storms = 10; Treament Vol = first 0.5in of runoff
Sand Filter	76.2	16.84	7.93	3.8			1.27	1.99					Gavan and T.N. Nguyen. 1995. Assessment of the Pollutant Removal Efficiences of Delaware Sand Filter BMPs. Final Report. Department of Transportation and Environmental Services.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Parking Lot; STP Size = 477.6ft3; Drainage area = 0.7acres; # of storms = 20; "Perimeter sand filter"

r		ree		**UNITS	SARE IN		ESS OTH		IUIED**	KN	-	тр			
Type	Inflow	Outflow	Inflow	Outflow	Inflow		Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Primary Source	Secondary Source	Comments
Dry Swale	50	4		Guilow			0.549	0.347	0.83	0.74	0.218	0.304	Dorman, M.E., J. Hartigan, R.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal from Highway Stormwater Runoff. Vol. 1. Research Report. Federal Hichway Administration.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land use = highway, Impervious cover = 63%, soil type = sandy; length 185'; Age of facility = 5years
Grass Channel	47	15.13					1.24	0.85			0.228	0.22	Goldberg. 1993. Dayton Avenue Swale Biofiltration Study. Seattle Engineering Department. Seattle, WA.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	%Impervious Cover = 20; "600ft long grass channel"; # of storms = 8; Drainage area = 90acres
Grass Channel	94.67	14					0.35	0.77			0.2	0.14	Seattle Metro and Washington Department of Ecology. 1992. Biofiltration Swale Performance: Recommendations and Design Considerations. Publication No. 657. Water Pollution Control Department Seattle	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Major roadway, residences, parks; impervious Cover = 47%; "grass channel design. 10 minute residence time for design storm; Drainage area = 15.5acres; slope = 4%; "Length 200ft. 5ft wide" Soil Type = diacial till
Grass Channel	128	30					0.26	0.31			0.1	0.06	Seattle Metro and Washington Department of Ecology. 1992. Biofiltration Swale Performance: Recommendations and Design Considerations. Publication No. 657. Water Pollution Control Department, Seattle	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Major roadway, residences, parks; impervious Cover = 47%; "grass channel design. 10 minute residence time for design storm; Drainage area = 15.5acres; slope = 4%; "Length 100ft. 5ft wide" Soil Type = glacial till
Vegetated Swale	157	21			0.91	0.46			2.17	1.46	0.55	0.31	Evaluation of the Performance of Permanent Runoff controls: Summary and Conclusions. Center for Research in Water Resources, University of Texas at Austin. Austin, TX: New 1007		Site 1; Treatment Length = 7.5 to 8.8m; slope = .73%; vegetation = buffalo grass; higher traffic than site 2; Percent efficiency calculated using event mean concentration (EMC) efficiency method.
Vegetated Swale	190	29			1.27	0.97			2.61	1.45	0.24	0.16	Parten, W.E. et al. Evaluation of the Performance of Permanent Runoff controls: Summary and Conclusions. Center for Research in Water Resources, University of Texas at Austin. Austin, TX:		Site 2; Treatment Length = 7.8 to 8.1m; slope = 1.7%; vegetation = mixed; lower traffic than site 1; Percent efficiency calculated using event mean concentration (EMC) efficiency method.

6.4.9 VEGETATED FILTER STRIP **UNITS ARE IN MG/L UNLESS OTHERWISE NOTED**

	٦	rss	TN		NO ₃		1	NO _x	٦	rkn		TP			
Туре	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Primary Source	Secondary Source	Comments
Vegetated Filter Strip	157	21			0.91	0.46							Evaluation of the Performance of Permanent Runoff controls: Summary and Conclusions. Center for Research in Water Resources, University of Texas at Austin. Austin, TX:	Site 1; Treatment Length = 7.5 to 8.8m; slope = .73%; vegetation = buffalo grass; higher traffic than site 2; Percent efficiency calculated using event mean concentration (EMC) efficiency method.	
Vegetated Filter Strip	190	29			1.27	0.97							Evaluation of the Performance of Permanent Runoff controls: Summary and Conclusions. Center for Research in Water Resources, University of Texas at Austin. Austin, TX:	Site 2; Treatment Length = 7.8 to 8.1m; slope = 1.7%; vegetation = mixed; lower traffic than site 1; Percent efficiency calculated using event mean concentration (EMC) efficiency method.	

				UNIT	IS ARE N	IG/L UNLE	SS OTHE	ERWISE NO	DTED						
	Т	SS	•	TN	1	1O ₃	NO _x		٦	rkn	1	P			
Туре	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Primary Source	Secondary Source	Comments
Shallow Marsh	11.85 ppm	7.85 ppm	1.14 ppm	0.99 ppm			0.2 ppm	0.15 ppm			0.085ppm	0.045ppm	Blackburn, R., P.L. Pimentel and G.E. French. 1986. Treament of Stormwater Runoff Using Aquatic Plants. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W. J.M. Kersnar and E.E. Dris coll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for the USEPA, Region V, Water Division, Watershed Manarement Linit EPA/600	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land use = Golf Course; Size of Wetland = 296acres; # of storms = 72; Treatment volume = 1in; Drainage area = 2340acres
Shallow Marsh	7.55	1.801	0.756	1.206			0.085	0.016			0.98	0.04	Carl, D. and B. Rusmon. 1995. Integrating a Herbaceous Wetland into Stormwater Management. Stormwater Research Program. Southwest Florida Water Management District. Programula El	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	# of storms = 81; Drainage area = 15.3; STP size = 3acres
Shallow Marsh	14	12									0.097	0.071	Koon, J. 1995. Evaluation of Water Quality Ponds and Swales in the Issaquah/East Lake Sammamish Basins. King County Surface Water Management and Washington Department of Ecology. Seattle, WA.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	2ft deep pool with emergent wetlands; second cell is free." # of storms = 5; Design Basis = 2 & 25 year quantity control only; Drainage area = 7.7 acres; "Inflow and Outflow values are presented as mean

6.6.1 CONSTRUCTED WETLAND

6.6.2 W	ET POND / RETENTION BASIN
UNITS ARE MG/LUNI ESS OTHERWISE NOTED	

	1	SS		TN		NO2		10.	1	KN	T	TP			
Туре	Inflow	Outflow	Primary Source	Secondary Source	Comments										
Wet Extended Detention Pond	177	39	3.352	1.459							0.761	0.214	Borden, R.C., J.L. Dorn, J.B. Stillman and S.K. Liehr. 1996. Draft Report. Evaluation of Ponds and Wetlands For Protection of Public Water Supplies. Water Resources Research Institute of the Univeristy of North Carolina. Department of Civil Engineering. North Carolina State University.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Dairy Farms, woodland; Impervious Cover = 16
Wet Extended Detention Pond	71	12	1.713	0.769			0.416	0.062			0.232	0.112	Lower Colorado River Authority. 1997. Innovative NPS Pollution Control Program for Lake Travis in Central Texas. LCRA.	Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection.	Land Use = parking lot/commercial
Wet Extended Detention Pond	45	14	1.27	0.91			0.096	0.032			0.651	0.164	Rushton, B., C. Miller and H. Hull. 1995. The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10-12, 1995.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Impervious Cover = 30%; Residence time = 5 days
Wet Extended Detention Pond	28	11	1.35	1.16			0.24	0.09			0.4	0.176	Rushton, B., C. Miller and H. Hull. 1995. The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10-12, 1995.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Impervious Cover = 30%; Residence Time = 2 days
Wet Extended Detention Pond	131	7	1.61	0.722			0.396	0.062			0.497	0.053	Rushton, B., C. Miller and H. Hull. 1995. The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10-12, 1995.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Impervious Cover = 30%; Land Use = rooftops, parking lots, vehicle storage; Residence Time = 14days
Wet Pond	20.6	6.5	0.93	0.65			0.18	0.02			0.136	0.035	Cullum, M. 1984. Volume II Evaluation of the Water Management System at a Single Family Residential Site: Water Quality Analysis for Selected Storm Events at Timbercreek Subdivision in Boca Raton, FL. South Florida Water Management	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = single family residential; Soil type = group A; Treatment Vol = 3.11in/acre

6.6.2 WET POND / RETENTION BASIN (cont.	.)
UNITS ARE MG/L UNLESS OTHERWISE NOTED	

l I		SS		TN		NO ₃	Ν	10 ^x	Т	KN	Ϊ΄	TP			
Type	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Primary Source	Secondary Source	Comments
Wet Pond	7	15							1.2	1.27	0.272	0.155	Dorman, M.E., J. Hartigan, R.F. Steg, and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal from Highway Stormwater Runoff. Vol. 1. Research Report. Federal Highway Administration.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Highway
Wet Pond	52	23	2.62	1.92			0.729	0.224	1.89	1.7	0.3	0.4	Dorman, M.E., J. Hartigan, R.F. Steg, and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal from Highway Stormwater Runoff. Vol. 1. Research Report. Federal Highway Administration.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Land Use = Highway
Wet Pond	45	19	1.64	1.39					0.31	0.31	0.17	0.12	Gain, S.W. The effects of Flow-Path Modifications on Urban Water-Quality Constitiuent Retention in Urban Stormwater Detention Pond and Wetland System, Orlando, Florida. Florida Departemtn of Transportation, Orlando, FL.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	Inflow and Outflow are reported as a mean concentration. "Pond was modified to increse detention time and was previously studied by Martin and Smoot (1988)." Percent efficiency calculated using event mean concentration (EMC)
Wet Pond									0.79	0.63	0.12	0.08	Wu, J. 1989. Evaluation of Detention Basin Performance in the Piedmont region of North Carolina. North Carolina Water Resources Research Institute. Report No. 89-248. Raleigh, NC.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	housing, woodland; Impervious cover = 38%; Soil type = clay; Surface area = 3.3 acres, Mean pond depth = 3.8'; Volume=12.3acre feet; "No geese present." Percent
Wet Pond									0.86	0.59	0.14	0.08	Wu, J. 1989. Evaluation of Detention Basin Performance in the Piedmont region of North Carolina. North Carolina Water Resources Research Institute. Report No. 89-248. Raleigh, NC.	Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices, 2 nd Edition. Center for Watershed Protection. Ellicott City, MD.	residential; Impervious cover = 46%; Residential = 100%; Pond = 4.9 acres; Mean pond depth = 8'; Volume = 38.8 acre feet; "Geese population present increase N and P values." Percent efficiency calculated using